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Introduction

The propagation of light through human tissue
is best described by the linear transport equation.
This equation describes neutral particles (e.g.,
photons or neutrons) streaming through a phys-
ical medium. One example of such a medium
would be water. Within the medium, the parti-
cles either stream uninterrupted or collide with
the nuclei that constitute the medium. A collision
results in either an absorption of the particle into
the nucleus or a scattering to a new direction and
new energy level. The application from biomedi-
cal optical imaging that is of interest is using this
equation along side non-invasive techniques (like
MRIs) for the detection of tissue abnormalities.

In my work, we define the solution to the trans-
port equation as the discrete function that mini-
mizes a pre-defined quadratic functional [1]. This
principle provides us with a guide to use in de-
veloping a solution procedure, because it defines
how to iteratively improve a discrete approxima-
tion to the true solution. Any improvement can
be defined so that it guarantees a reduction in the
error in an energy-like norm. This same principle
from calculus allows one to find the minimum (or
maximum) of a quadratic function.

Recent Advances

Several recent changes have been made to the
serial Fortran program that algorithmically rep-
resents the solution technique described above.
These changes allow for the modeling of a
broader range of problems. The initial program
was only written for three-dimensional simula-
tions. Recently, I adapted the code to allow for
two-dimensional simulations. The problem with
three-dimensions is that the corresponding serial
Fortran code is extremely demanding of computer
memory and also requires many computer oper-
ations to find an accurate solution. As a matter

of fact, we can not model realistic problems that
require high accuracy without a parallel imple-
mentation of such a code. By investigating two-
dimensional calculations, we can examine prob-
lems that need high accuracy. Hence, we can
check the code’s performance for a larger class
of problems. Eventually, we can use information
obtained from the two-dimensional simulations to
improve the code for three-dimensions.

Figure1. Scalar flux for a two-material steady-
state problem with a boundary source at x=±30
and y= 0.

Two other features have also been added. One
is the addition of reflective boundary conditions
and the other is the addition of anisotropic scatter-
ing [2]. Reflective boundary conditions allow us
to model problems that have an innate symmetry.
This can be observed in Figure 1. We were able to
solve this problem on the domain[0,30]× [0,30],
instead of the full domain. Anisotropic scatter-
ing is necessary because it corresponds to what
is seen with light propagation in biological tis-
sue. With anisotropic scattering, we can account
for particles that, after a collision with a nucleus,
scatter in a preferential direction.

These new advances have allowed for the gen-
eration of the image seen in Figure 1. This im-
age corresponds to the scalar flux, which is pro-
portional to particle density, an example in which
there is a source of photons on the boundary and
two materials on the interior. The regions en-
compassing the two materials can be made out
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from the figure. One material is nearly a void.
Here, particles have nothing to interact with. The
second material is considered “thick”; thus, most
particles entering this domain are scattered or ab-
sorbed by nuclei.

Summary

These recent advances are part of a plan
to eventually allow for adaptive mesh refine-
ment and more meaningful physical problems.
The long term goal is to use this code within
impedance tomography problems, and thus use
this for the detection of tissue abnormalities. Cur-
rently, this is often accomplished through the dif-
fusion equation. The transport equation is a better
model and should provide more accurate results.
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